линейное состояние - tradução para francês
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

линейное состояние - tradução para francês

Критическое состояние реактора; Критическое состояние (ядерная физика); Надкритическое состояние; Подкритическое состояние

линейное состояние      
état de contrainte uniaxial
устойчивость         
СТРАНИЦА ЗНАЧЕНИЙ В ПРОЕКТЕ ВИКИМЕДИА
Устойчивое состояние
stabilité
стабильность         
СТРАНИЦА ЗНАЧЕНИЙ
Стабильное состояние
ж.
stabilité

Definição

Линейное преобразование

переменных x1, x2, ..., xn - замена этих переменных на новые x'1, x'2, ..., x'n, через которые первоначальные переменные выражаются линейно, т. е. по формулам:

x1 = a11x'1 + a12x'2 + ... + annx'n + b1,

x2 = a21x'1 + a22x'2 + ... + a2nx'n + b2,

...

xn = an1x'1 + an2x'2 + ... + annx'n + bn,

здесь aij и bi (i, j = 1,2, ..., n) - произвольные числовые коэффициенты. Если b1, b2,..., bn все равны нулю, то Л. п. переменных называют однородным.

Простейшим примером Л. п. переменных могут служить формулы преобразования прямоугольных координат на плоскости

х = x' cos α - y' sin α + a,

у = x' sin α + y' cos α + b.

Если Определитель D = ∣aij ∣, составленный из коэффициентов при переменных, не равен нулю, то можно и новые переменные x'1, x'2, ..., x'n линейно выразить через старые. Например, для формул преобразования прямоугольных координат

и

x' =x cos α + ysin α + a1

y' = -x sin α + cos α + b1

где a1 = - a cos α - b sin α, b2 = a sin α - b cos (. Другими примерами Л. п. переменных могут служить преобразования аффинных и однородных проективных координат, замена переменных при преобразовании квадратичных форм и т. п.

Л. п. векторов (или Л. п. векторного пространства (См. Векторное пространство)) называют закон, по которому вектору х из n-мерного пространства ставят в соответствие новый вектор x', координаты которого линейно и однородно выражаются через координаты вектора х:

x'1 = a11x1 + a12x2 + ... +a1nxn

x'2 = a21x1 + a22x2 + ... +a2nxn

...

x'n = an1x1 + an2x2 + ... +annxn,

или коротко

x' = Ax.

Например, операция проектирования на одну из координатных плоскостей (пусть на плоскость хОу) будет Л. п. трёхмерного векторного пространства: каждому вектору а с координатами х, у, z сопоставляется новый вектор b, координаты x', y'., z' которого выражаются через х, у, z следующим образом : x' = х, y' = у, z' = 0. Пример Л. п. плоскости - поворот её на угол α вокруг начала координат. Матрицу (См. Матрица)

,

составленную из коэффициентов Л. п. А, называют его матрицей. Матрицами приведённых выше Л. п. проектирования и поворота будут соответственно

и .

Л. п. векторного пространства можно определить (как обычно поступают) без использования системы координат: соответствие ху = Ax называют Л. п., если выполняются условия А(х + у) = Ax + Ау и Ax) = αА(х) для любых векторов х и у и любого числа α. В разных системах координат одному и тому же Л. п. будут соответствовать разные матрицы и, следовательно, разные формулы для преобразования координат.

К Л. п. относится, в частности, нулевое Л. п. О, переводящее все векторы в 0 (нулевой вектор) : Ox = 0 и единичное Л. п. Е, оставляющее все векторы без изменения: Ex = х; этим Л. и. в любой системе координат соответствуют нулевая и единичная матрицы.

Для Л. п. векторного пространства естественным образом определяются операции сложения и умножения: суммой двух Л. п. А и В называют Л. п. С, переводящее любой вектор х в вектор Cx = Ax + Вх; произведением Л. п. А и В называют результат их последовательного применения: С = AB, если Cx = А(Вх).

В силу этих определений совокупность всех Л. п. векторного пространства образует Кольцо. Матрица суммы (произведения) Л. п. равна сумме (произведению) матриц Л. п. слагаемых (сомножителей); при этом существен порядок множителей, так как произведение Л. и., как и матриц, не обладает свойством коммутативности (См. Коммутативность). Л. п. можно также умножать на числа: если Л. п. А переводит вектор х в вектор у = Ax, то αА переводит х в αу. Примеры операций над Л. п.: 1) Пусть А и В означают операции проектирования па оси Ox и Оу в трёхмерном пространстве; А + В будет проектированием на плоскость хОу, а AB = 0. 2) А и В - повороты плоскости вокруг начала координат на углы φ и ψ; AB будет поворотом на угол φ + ψ. 3) Произведение единичного Л. п. Е на число α будет преобразованием подобия с коэффициентом растяжения (или сжатия) α.

Л. п. В называют обратным к Л. п. А (и обозначают А-1), если BA = Е (или AB = Е). Если Л. п. А переводило вектор х в вектор у, то Л. п. А-1 переводит у обратно в х. Л. п., обладающее обратным, называют невырожденным; такие Л. п. характеризуются также тем, что определитель их матрицы не равен нулю. Некоторые классы Л. п. заслуживают особого упоминания. Обобщением поворотов двумерных и трёхмерных евклидовых пространств являются ортогональные (или унитарные - в комплексных пространствах) Л. п. Ортогональные Л. п. не изменяют длин векторов (а следовательно, и углов между ними). Матрицы этих Л. п. в ортонормированной системе координат также называются ортогональными (унитарными): произведение ортогональной матрицы на её транспонированную даёт единичную матрицу: ∑kaikajk = ∑kakiakj = 0 при i ≠ j, ∑ka2ik = ∑ka2ki = 1 (в комплексном пространстве ∑kaikjk = ∑kakikj = 0, ∑k|ajk|2 = ∑k|aki|2 = 1). Симметрическим (эрмитовым, или самосопряжённым, - в комплексном пространстве) Л. п. называют такое Л. п., матрица которого симметрическая: aij = aji (или (aij = a̅ij). Симметрические Л. п. осуществляют растяжение пространства с разными коэффициентами по неск. взаимно ортогональным направлениям. С симметрическими Л. п. связана теория квадратичных форм (или эрмитовых форм в комплексном пространстве).

Приведённое выше определение Л. п. в векторном пространстве, не использующее координатную систему, без всяких изменений распространяется и на бесконечномерные (в частности, функциональные) пространства. Л. п. в бесконечномерных пространствах принято называть линейными операторами (См. Линейный оператор).

Лит.: Александров П. С., Лекции по аналитической геометрии..., М., 1968; Мальцев А. И., Основы линейной алгебры, 3 изд., М., 1970; Ефимов Н. В., Розендорн Э. P., Линейная алгебра и многомерная геометрия, М., 1970.

Wikipédia

Реактивность ядерного реактора

Реактивность ядерного реактора — безразмерная величина, характеризующая поведение цепной реакции деления в активной зоне ядерного реактора и выражаемая соотношением:

ρ = k e f 1 k e f {\displaystyle \rho ={{k_{ef}-1} \over k_{ef}}} ,

в котором k e f {\displaystyle k_{ef}} означает эффективный коэффициент размножения нейтронов. Реактивность зависит от формы реактора, расположения материалов в нём и нейтронно-физических свойств этих материалов. Является интегральным параметром ядерного реактора, то есть характеризует весь реактор в целом.

В разных случаях для удобства величина реактивности может выражаться в процентах, эффективных долях запаздывающих нейтронов, "долларах" (единица реактивности) и их сотых долях центах и т. д.